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Why do we need fast timing? 7

TLAS interaction, timing resolution on the order of
picoseconds will be needed.

FP420
\ To associate scattered protons with their point of
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Fig. 2: Central Exclusive Production (CEP): pp — p +
H+ p.

CMS 420

The FP420 R&D promises to rich program
of studies of the Higgs Boson, quantum
chromodynamics, electroweak and beyond

FP420 detectors the Standard Model physics.

Fig. 1: Simple Layout of the LHC and proposed
FP420 detectors
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Why Cerenkov Radiation? -

Cerenkov radiation emits mostly

e Cerenkov radiation occurs blue light in the visible spectrum

when a charged particle
traverses a dielectric medium at
a speed greater than the speed
of light in that medium.

emitted cerenkov
photons

" particle moving
at relativistic
speeds

cosfl =

1
n3

Important properties of cerenkov radiation:
e Cerenkov Light is prompt.
e Cerenkov light is emitted at a given angle for given , o
. . Picture courtesy of Wikipedia:
refractive index. http://en.wikipedia.org/wiki/Cherenkov_radiation

Fig. 4: Blue Cerenkov light seen at a nuclear reactor.
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Project Objective: Conduct simulation studies to

explore the possibility of using quartz and aerogel to make
detectors capable of picosecond timing.

Toolbox

Geant4: A C++ based Monte Carlo simulation software that
simulates the passage of particles through matter. Simulates
processes inside radiator, i.e. Quartz bar and Aerogel. Includes:

+ Electro-magnetic physics

+ Cerenkov radiation
Rayleigh Scattering (only for Aerogel)
Absorption
Dispersion (only for Quartz)
Reflection, refraction etc...
+ Outputs ROOT file for analysis

ROOQOT: A C++ based analysis software. Simulates detector
response:

+ Quantum Efficiency
+ Light Collection Efficiency
+ Time transit spread
+ Outputs ROOT file for analysis.
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Quartz Bar Geometry and Set- 3%

Fig. 5: Layout of quart bar simulation

] G4DataZ.heprep = =@ X

-Quartz bar:
6X6 mm x 9cm.

-6X6 mm sensitive detectors on
each end.

-Incident beam of 7TeV protons
perpendicular to bar.

-Only Cerenkov radiation.

Scintillation, and rayleigh
scattering were not added.
Dispersion was not added initially.

R & Qi+ QO <
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Photon Spectrum/Statistics £&

Refractive Index: 1.5, 1000 Events
Results Taken at the moment of creation.

velength spectrum of primary and secondary photons.

wavelength distribution nm clambda

Entries 528980
= Mean 340.5
RMS 118.5

i Geant 4 (primary photons)
Calculation
Geant 4 (Secondary photons)

nphotons

= 27raLsin6 [, 512
2

103 i,
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* Primary Photon: Cerenkov photon that originates directly from incident particle (proton).
‘Secondary Photon: Cerenkov photon that originates from delta electrons.
‘Secondary photons can potentially skew timing results by arriving at the detector before

the primary photons.
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Photon Spectrum/Statistics £&
EZZS I(t:;l\'ll'z Iigie;(t: t1h.e5 rr11 8 r(r)fe rEth?fncE?eation.

Avelength spectrum of primary and secondary photons. Fig. 7: Number of primary and secondary photons per event.
wavelength distribution nm clambda Nr of secondary Cherenkov Phtons per event Nr_of_sphotons
Entries 528980 Entries 1000

Mean 340.5 Mean 66.84
RMS 118.5 10° & RMS 197.3

Geant 4 (primary photons)
Calculation
Geant 4 (Secondary photons)

nphotons

= 27raLsin6 [, 512
2

Primary Photons
Secondary Photons

10°
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* Primary Photon: Cerenkov photon that originates directly from incident particle (proton).
‘Secondary Photon: Cerenkov photon that originates from delta electrons.
‘Secondary photons can potentially skew timing results by arriving at the detector before

the primary photons.
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Average Number of Photoelectrons at
Each Detector vs. Angle of Incident
B eam Cherenkoy Light

uantum Efficiency of Photek and Hamamatsu vs. wavelength
A graph Showing Quantum Eff vs. Wavelength
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-Time transit spread: 30 psec
-Gain: 100
-Cerenkov angle: 48.2
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A graph Showing Average Number of photoelectrons vs. Incident angle
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The Differentiated Center of Gravity Method e
(DCOQG) £

Fig. 11: Arrival time of electrons Fig: 12: Arrival Pulse Differentiated
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Fig. 13: Center of Gravity of 15t peak in Diff. Arrival Pulse Fig. 14: Spread of arrival time for a 1000 events
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Arrival Time and Timing-

Arrival Time vs. incident angle
A graph Showing Average Timing vs. Incident angle
§°-32 Photoelectrons: Hamamatsu
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-Timing and timing resolution obtained using DCOG Method
-Cerenkov Angle: 48.2
-Time Transition Spread: 30 psec, Gain: 100
-Each data point is taken over 1000 events. 9

-Best timing resolution of ~2.8 psec at 65 degrees.
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Arrival Time and Timing-
Resolution vs. Angle Incident
Beam
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Arrival Time vs. incident angle

A graph Showing Average Timing vs. Incident angle

Fig. 16:Timing resolution versus incident angle

A graph Showing Average Timing Resolution vs. Incident angle
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-Timing and timing resolution obtained using DCOG Method

-Cerenkov Angle: 48.2
-Time Transition Spread: 30 psec, Gain: 100
-Each data point is taken over 1000 events.

-Best timing resolution of ~2.8 psec at 65 degrees.
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Arrival Time and Timing-
Resolution vs. Angle Incident
Beam
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Arrival Time vs. incident angle

A graph Showing Average Timing vs. Incident angle

Fig. 16:Timing resolution versus incident angle

A graph Showing Average Timing Resolution vs. Incident angle

§°-32 Photoelectrons: Hamamatsu
i< MCP-PMT R3809U-65
o031
£ C Photoelectrons: Photek 240
E 03
= — \
C
0.29
E Cerenkov Angle
0.28F Arrival time:: ~0.24nsec
0.27F |
0.263—
0.253—
0.24
:IlllllllllllIlIlIIIIIIlI?IlllIIIlIlIllI
0 10 20 30 40 50 60 70

Incident Angle

-Timing and timing resolution obtained using DCOG Method

-Cerenkov Angle: 48.2
-Time Transition Spread: 30 psec, Gain: 100
-Each data point is taken over 1000 events.

-Best timing resolution of ~2.8 psec at 65 degrees.
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Cerenkov Angle:
Timing resol. ~3.2 psec
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n=1.5
NO DISPERSION!
100% Light Collection efficiency!
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Timing Resolution S
(Revised)

. 17: Timing resolution Without Dispersion and 100% LCE Fig. 18: Timing Res. With Dispersion and 60% LCE
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- LCE: Light Collection Efficiency

-Timing and timing resolution obtained using DCOG Method
-Cerenkov Angle: 48.2

-Time Transition Spread: 30 psec, Gain: 100

-Each data point is taken over 1000 events.
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Simulation of the Aerogel Jt.
Counter

L

Fig. 20: Aerogel Simulation Set-up Refractive Index: 1.0306
Aerogel (SiO,)Dimensions:
4cm X 4cm X 1.1cm

Detector Dimensions (Photek):
dia. 4.1cm

Plane Elliptic Mirror:
radx: 3.8cm

rady: 5.3cm

Mirror Tilt: 45 degrees

Optical path length from aerogel
surface to detector: 4.0 cm

Incident protons @ 200GeV 11
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Material Properties of Aerogel £&

Fig. 21: Scatter length (cm) vs. Wavelength for Aerogel

photo of Aerogel block Scatterlength (cm) vs Wavelength
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Wavelength (nm)

Refractive Index: 1.0306 (Lowest of any known solid)
Density: ~0.2 g/cm?3

Negligible dispersion.

Absorption length: ~62 cm

Values obtained from a Geant4 example for
Rich Detector simulation for LHCb: http://www-geant4.kek.jp/Ixr/source/examples/advanced/Rich/
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Fig. 22: Photon Hits at Detector
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Fig. 23: Timing resolution for a 1.1cm Aerogel Tile
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-1.1 cm Aeorgel Tile

-LCE 60%

-Timing res. obtained using DCOG method
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Increasing the number of 1.1cm Tiles

Fig. 24: Photon hits for 1 x 1.1cm Tile
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Fig. 26: Photon hits for 3 x 1.1cm Tile
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Fig: 25: Photon hits 2 x 1.1cm Tile
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Fig 27: Photon hits for 4 x 1.1cm Tile
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Varying the Number of 1.1 cm 2=
Tiles

8: Number of Photoelectrons vs. Total Tile Thickness Fig. 29: Timing Resolution vs. Total Tile Thickness

| A graph Showing Average Timing vs. Total Thickness of Tiles (cm) |

A graph Showing Average Number of Photoelectrons vs. Total Thickness of Tiles (cm)
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1000 Events with Rayleigh Scattering ‘Timing Resolution levels off
Time Transition Spread: 30 psec with increase in total tile

Gain: 100 N thickness.
Light Collection Efficiency (Photek): 60%
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Effect of Rayleigh Scattering

Fig. 30: Photon Wavelength Spectrum at Detector
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Fig. 31: Efficiency Spectrum

wavelength
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Fig. 17 compares wavelength spectrum of photons
arriving at the detector for the cases of one, two and
three 1.1 cm Aerogel tiles. The bold lines represent
the simulated wavelength spectrum in the case of no
Rayleigh Scattering and the thin lines represent the
spectrum with Rayleigh Scattering.
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Fig. 18 represents the wavelength spectrum
of the proportion of photons that reaches
the detector after Rayleigh Scattering.
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Future Work

Compare DCOG with other methods of
obtaining timing resolution.

Add blue filter in quartz bar simulation.
Investigate systematic errors in Aerogel
experiment. Explore ways to optimize
experiment.

Explore ways to ‘focus’ the cerenkov light
leaving the aerogel radiator onto a detector
farther away.

Find ways to add electronic effects to the
detector response simulations.

...much much more.
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The following are some additional
slides that might help in explaining a
few questions.




Simulation of Aerogel
Rad |at0r Refractive Index: 1.0306

Without Rayleigh Scattering With Rayleigh Scattering
~10% loss of Photons
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Why Cerenkov Radiation?

We can use the properties of cerenkov light for particle 1D, time of flight
(TOF) measurements and fast timing.

Fig. 5: Cerenkov Angle versus
particle momentum through a
medium of refractive index 1.5
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Quartz Bar Properties

Refractive Index vs.Wavelength Absorption vs.Wavelength
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Varying Length of Quartz bar

Number of Photons arriving at detector vs. Number of Photoelectrons vs. Length of Quartz
Length of Quartzbar. bar.
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Varying Thickness of Quartz bar

Number of Photons arriving at detector vs. Number of Photoelectrons vs. Thickness of
Thickness of Quartzbar. Quartz bar.
A graph Showing A ge Number of Ph ons vs. Thick of Quartz Bar (cm) I | A graph Showing Average Number of Photons vs. Thickness of Quartz Bar(cm) |
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